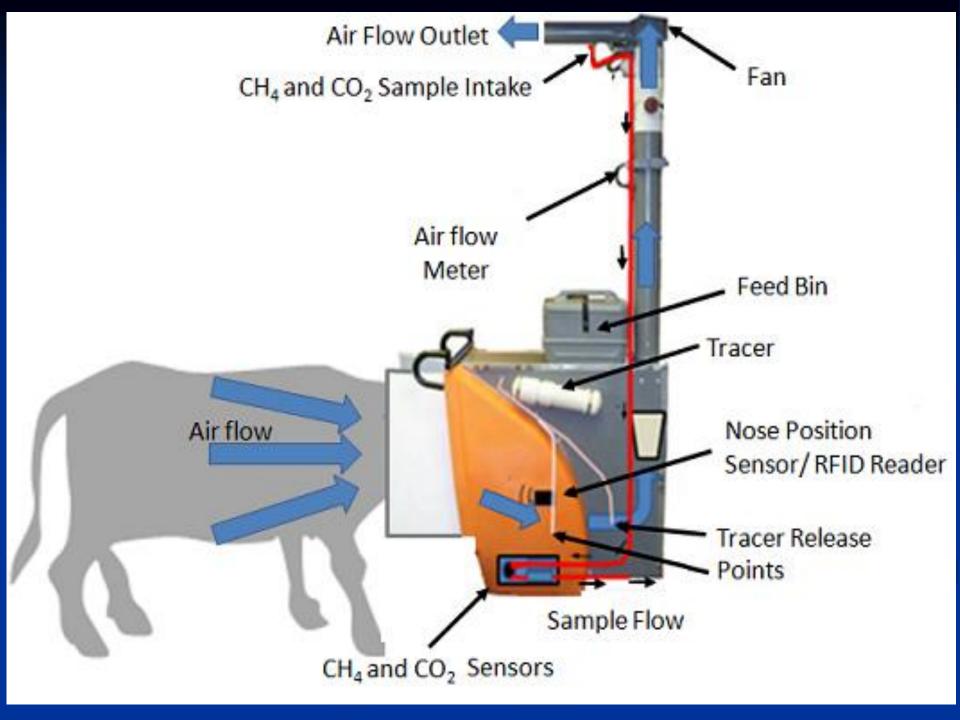
Comparison of active flux and passive concentration measurements of methane emissions from cattle

J. Dairy Sci. 98:3394–3409 http://dx.doi.org/10.3168/jds.2014-9118 © American Dairy Science Association®, 2015.

Comparison of methods to determine methane emissions from dairy cows in farm conditions

P. Huhtanen,*1 E. H. Cabezas-Garcia,* S. Utsumi,† and S. Zimmerman‡

*Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden †Department Animal Science and Kellogg Biological Station, Michigan State University, Hickory Corners 49060 ‡C-Lock Incorporated, Rapid City, SD 57702



Introduction

- Online methods
 - Measurements of CH₄ during visits to automatic milking systems or concentrate feeders
 - Methane emission index (Garnsworthy et al.)
 - CO₂ tracer method (Madsen et al.)
 - \blacksquare CH₄ Flux = CO₂ × CH₄ / CO₂
 - CO₂ a tracer based on estimated heat production

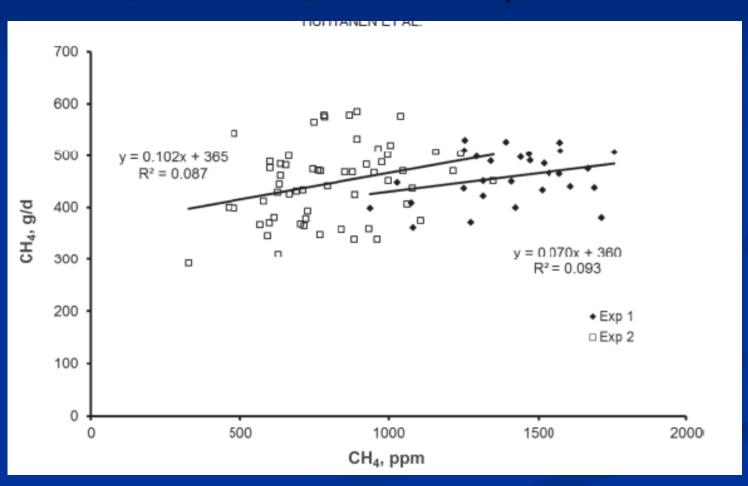
GreenFeed

- Flux method
- CH₄ flux = Concentration × Air flow
- Air flow 25-30 L/s
- Head sensors; if head position is not correct the data is filtered out
- Cows visit three to five times each day by programming the food reward
- SLU experiences:
 - Mean production about 450 g/d; between cow CV 11-12% for CH_4 /DMI 8-10%; $CH4_4$ /GE ~ 6.5%; High repeatability (0.70 0.75)
 - Consistent ranking for low and high emitters

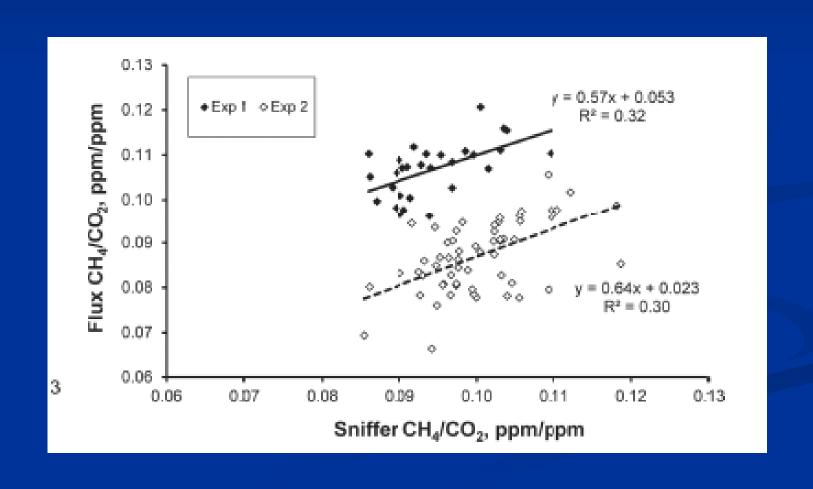
Objectives

 To compare to compare active gas capture (AGC) = GreenFeed setup ("flux") and passive concentration measurement (PCM) method = setup of methods based on concentration and gas ratio measurements ("sniffer")

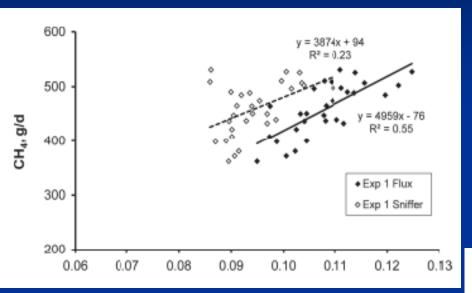
Material and methods

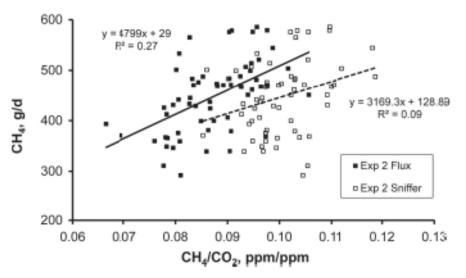

- Five 10 day periods (AGC PCM AGC PCM AGC) during a change-over feeding experiment investigating the effects of forage type (grass vs. grass/red clover) and protein supplementation
- Total mixed ration (forage: concentrate 60:40)
- Automatic feeding 5 times/day
- The cows were programmed to visit every 7 h
- 8 drops of concentrates every 40 s
- Mixed model analysis; cow observation unit
- Repeatability (R) was calculated as R = δ^2_{Animal} / (δ^2_{Animal} + $\delta^2_{Residual}$)

Data description

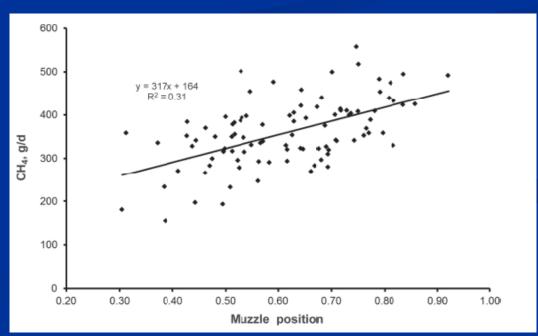

	Item	CH4 ^a	CO ₂ °	CH ₄ /CO ₂	Visits
System		(g/d)	(g/d)	vol/vol	(number)
AGC	N	75	75	75	
	Mean	453	11619	0.107	
	SD	50	850	0.0069	
	CV	0.110	0.073	0.064	
	Repeatability	0.74	0.84	0.62	0.50
PCM	N	57	57	57	
	Mean	1405	14924	0.094	
	SD	247	2340	0.0062	
	CV	0.176	0.157	0.066	
	Repeatability	0.72	0.87	0.57	0.68

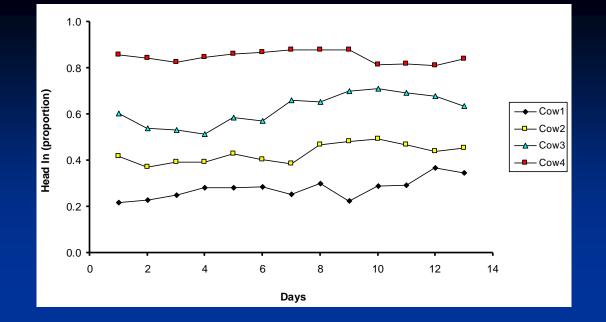
^a Flux (g/d) for AGC and concentration (ppm) for PCM

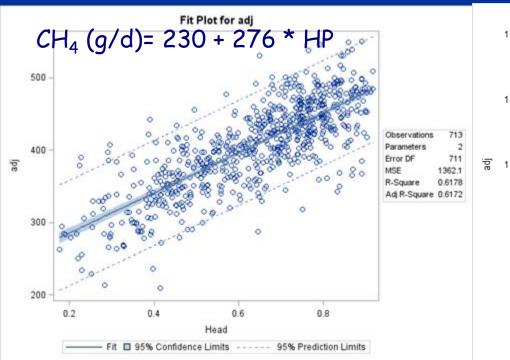

Relationship between CH₄ concentration (Sniffer) and CH₄ flux

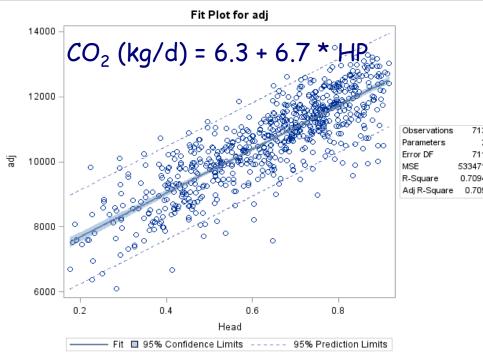


Relationship between the methods in CH_4/CO_2 ratio


Relationship between the methods in CH_4/CO_2 ratio






Effects of muzzle position

- High repeatability of muzzle position
 - 0.74 for cow/day data
 - 0.82 for cow/period data

Problems related to CO₂ tracer method

- High CH₄ / CO₂ can result from
 - Increased CH₄ production
 - Increased intake (all incremental DMI produce CH₄, but only part CO₂ - more to milk, body)
 - Improved feed efficiency (less CO₂ produced per unit of intake)
- Low CH₄ / CO₂
 - Mobilization of body tissues (produce CO₂, but not CH₄)
 - Low intake
 - Low feed efficiency

Data from respiration studies in cows fed mainly grass silage-based diets (Yan et al., 2010)

Table 1. Summary statistics for animal and dietary variables used in model development

Variable	Mean	SD	Minimum	Maximum
Animal and dietary data				
Live weight (kg)	543	66.8	379	733
BCS^1	2.57	0.285	1.75	3.75
DMI(kg/d)	16.8	31.3	7.5	25.0
Milk yield (kg/d)	22.6	6.75	3.2	49.1
Forage proportion (g/kg of DM)	540	191.5	181	1,000
CP (g/kg of DM)	178	25.3	113	250
Ash (g/kg of DM)	81	10.2	57	113
ADF (g/kg of DM)	240	43.8	169	362
NDF (g/kg of DM)	420	73.9	265	604
Gross energy (MJ/kg of DM)	18.4	0.53	16.6	19.8
Energy intake and output data (MJ/d)				
Gross energy intake $CV = 3.6/21 = 17.1\%$	309	59.0	137	461
Fecal energy	75	17.6	26	133
Urinary energy	11	3.8	2	28
Methane energy	21	3.6	11	32
Heat production	126	19.8	79	187
Milk energy	73	20.9	11	141
Energy balance	3	22.4	-88	71

¹The BCS of each cow was determined using the method described by Mulvanny (1977), with 5 categories from 1 (very thin) to 5 (very fat).

Conclusions

- Sniffer concentration poorly correlated to CH₄ flux measured by the Flux method despite high repeatability of the data
 - High repeatability can reflect more repeatability of head position in Sniffer systems
 - Low emitters can be cows that keep their head longer distance from gas sampling tube
- Low CH₄ / CO₂ with tracer method can result from
 - Low CH₄ emissions
 - Low feed efficiency (Increased CO₂ at given production)
 - Low CH_4 / CO_2 can be due negative energy balance (CO_2 produced from body tissues)

