Overview on methane proxies (COST Action ‘METHAGENE’)

Richard Dewhurst

Leading the way in Agriculture and Rural Research, Education and Consulting
Short-term measurements not covered
Potential targets for proxies

- Extent of rumen fermentation (FOM)
- Type of rumen fermentation (VFA profile)
- Conditions for methanogenic archaea
- Methanogens and methane production
- Digestibility & rumination
- Rumen volume & passage rates (X-ray CT)
- Thermal imaging?
- Milk fatty acids & MIR analysis
- Faecal ether lipids
- Methanogens in digesta (abattoir)
- H isotope fractionation
Low-methane yield sheep have smaller rumens and shorter rumen retention time

John P. Goopy1, Alastair Donaldson1, Roger Hegarty2, Philip E. Vercoe3,4, Fay Haynes2, Mark Barnett2 and V. Hutton Oddy1

1Agriculture NSW, Beef Improvement Centre, Trevenna Road, Armidale, NSW 2351, Australia
2School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
3School of Animal Biology, University of Western Australia, Perth, WA, Australia
4UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia

(Submitted 14 December 2012 – Final revision received 1 August 2013 – Accepted 3 August 2013 – First published online 8 October 2013)
Do we want smaller rumen and shorter rumen retention time?
Recent meta-analysis (8 studies)

Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle

H. J. van Lingen,*† L. A. Crompton,‡ W. H. Hendriks,¶ C. K. Reynolds,§ and J. Dijkstra†

*† Ti Food and Nutrition, PO Box 557, 6700 AN Wageningen, the Netherlands
‡ Animal Nutrition Group, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
¶ Division of Food Production and Quality, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, United Kingdom
§ Faculty of Veterinary Medicine, Utrecht University, PO Box 80.183, 3508 TD Utrecht, the Netherlands

\[
\text{CH}_4 \text{ (g/kg of DMI)} = 23.39 \pm 1.21 + 9.74 \pm 3.23 \\
\times \text{C16:0-iso} - 1.06 \pm 0.17 \times \text{trans-10+11 C18:1} \\
- 1.75 \pm 0.49 \times \text{cis-9,12 C18:2},
\]

\[[3] \]
Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows

F. Dehareng¹, C. Delfosse¹, E. Froidmont², H. Soyeurt³,⁴, C. Martin⁵, N. Gengler³,⁴, A. Vanlierde¹ and P. Dardenne¹

¹Valoration of Agricultural Products Department, Wallon Agricultural Research Centre, B-5030 Gembloux, Belgium; ²Department of Production and Soil Agroecology, Wallon Agricultural Research Centre, B-5030 Gembloux, Belgium; ³Animal Science Unit, Gembloux Agro-Bio-Tech, University of Liège, B-5030 Gembloux, Belgium; ⁴Fonds Publics for Scientific Research, B-1000 Brussels, Belgium; ⁵ULiège Herbesvives, BIOAGRI-Clermont-Ferrand Research Centre, F-63122 Saint Genis, Champagnole, France.

Figure 3 Infrared methane prediction on the basis of milk spectra of the day 1.5 for the different diets: corn silage (●), fresh pasture (○) and grass silage (+). PCA = principal component analysis.
Methanogen lipid markers

- GDGT - tetraether
- Archaeol - diether

Types of structures:
- Monolayer with tetraethers
- Bilayer with diethers
Treatment means – across studies
Faecal tetraethers

<table>
<thead>
<tr>
<th>Dietary treatment</th>
<th>Concentrates</th>
<th>Grass silage</th>
<th>s.e.d.</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaeol (mg/kg DM)</td>
<td>9.4</td>
<td>71.1</td>
<td>6.57</td>
<td><0.001</td>
</tr>
<tr>
<td>GDGT-0 (mg/kg DM)</td>
<td>87</td>
<td>147</td>
<td>36.9</td>
<td>0.138</td>
</tr>
<tr>
<td>Ratio (g/g)</td>
<td>10.4</td>
<td>2.09</td>
<td>1.95</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Tetraethers reduce membrane permeability and so are advantageous at low rumen pH

McCartney et al., 2014
Methanogen abundance

Archael abundance in *post-mortem* ruminal digesta may help predict methane emissions from beef cattle

R. John Wallace¹, John A. Rooke², Carol-Anne Duthie³, Jimmy J. Hyslop³, David W. Ross³, Nest McKain¹, Shirley Motta de Souza¹, Timothy J. Snelling¹, Anthony Waterhouse² & Rainer Roehe²

¹Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK, ²SRUC, West Mains Road, Edinburgh EH9 3JG, UK.
FACCE JPI Multi-partner call on Agricultural Greenhouse Gas Research

Understanding the development and control of stability in the rumen microbiome as a basis for new strategies to reduce methanogenesis

ACRONYM: RumenStability
Project partners

- Richard Dewhurst (SRUC; co-ordinator)
- Teagasc (Ireland): Sinead Waters
- UCD (Ireland): Evelyn Doyle
- CSIC (Spain): David Yanez-Ruiz
- Ghent University (Belgium): Veerle Fievez
- INRA (France): Diego Morgavi
- ILVO (Belgium): Sam De Campeneere
- FBN (Germany): Björn Kuhla
- AgResearch (New Zealand): Stefan Muetzel
- Aberystwyth University (UK): Jamie Newbold
Objective

- Investigate long-term effects of short-duration dietary treatments on rumen microbiome and methanogenesis:
 1. weaning;
 2. diet transitions in adult ruminants (e.g. to grazing or high-concentrate feeding)

- Hypothesis: initial microbial colonisation influences the microbial ecosystem in later life…. and that the development of host immune response to the microbiome is involved
Application

• Identify short-term treatments that can give long-term reductions in methane production (reduced cost; easier to implement, particularly in grazing situations)

• Understand adaptation of the rumen – reasons for failure of treatments designed to reduce methanogenesis

• Understanding of the basis for between-animal variation in methane production (that will feed into genetic/genomic studies)
Components of the work

• New animal studies
 – Platform Experiments – biobanking and sharing samples for different experiments; and future funding bids

• Additional analysis on existing/planned studies (methane measurements; rumen microbiome analysis)

• Workshops, visits, training, standardisation

• Economic evaluation of strategies

• Dissemination
New animal studies

- Weaning age x animal type (dairy vs. beef) (Teagasc)
- Use of PUFA and medium-chain oils in diets of ewes/lambs (Ghent)
- Conventional vs. ‘step-down’ weaning strategy for calves (FBN)
- Methanogen inhibitors from birth to weaning (AgResearch)
- Dietary treatments for calves (ILVO)
- Diet treatments for ewes and lambs (INRA)
- Diet treatments for bull calves (INRA)