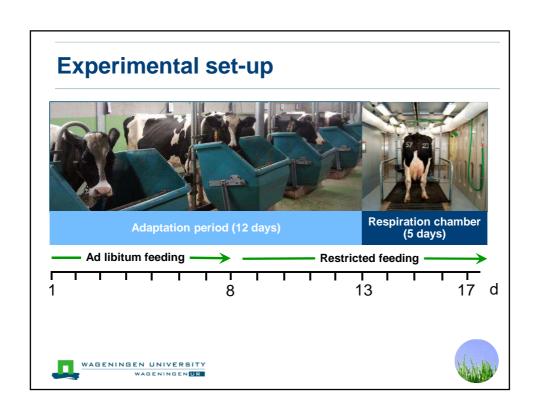

Mitigating enteric methane emissions: impact of nutritional quality of grass herbage and grass silage

Jan Dijkstra - Wageningen University, the Netherlands

Grass and enteric methane production

 Grass is main feed base to produce milk

- Conflicting evidence on relationship grass quality and enteric CH₄ production
 - significant effects grass quality on in vitro CH₄ production (Navarro-Villa et al., 2012)
 - minor effect grass quality on CH₄ per unit feed in sheep and cattle (SF₆ / respiration chamber; Clark, 2013)
 - mechanistic models indicate significant effects grass quality on CH₄ production (Ellis et al., 2012)


Grass and enteric methane production

Objective: evaluate effects of fertilisation rate, grass maturity and feed intake level on enteric CH₄ production of dairy cattle

- 3 experiments with 18 dietary treatments
 - 4 grass herbage treatments
 - 14 grass silage treatments
 - 132 individual cow observations in respiration chamber
- CH₄ yield (% gross energy) and intensity (g/kg milk)

Exp 1: grass herbage (85% diet DM) - effect of N fertilization & maturity

		Trea	<i>P</i> -value			
	low fertil.		high	fertil.	fertil.	maturity
	early	late	early	late		
OM dig. (%)	77.0	74.0	83.6	79.6	<0.01	<0.01
FPCM (kg/d)	21.1	16.8	22.6	21.2	<0.01	<0.01
CH ₄ (% GE)*	6.5	6.4	6.7	7.1	0.07	NS
CH ₄ (g/kg FPCM)	14.9	17.4	14.6	16.2	NS	0.02

^{*} IPCC default 6.5%

Warner et al. (2015) J Dairy Sci

WAGENINGEN UNIVERSITY
WAGENINGEN UR

Exp 2: grass silage (80% diet DM) - effect of N fertilization & maturity

	Treatment						<i>P</i> -value	
	low fertil.		high fertil.			fertil.	mat.	
	early	mid	late	early	mid	late		
OM dig. (%)	80.6	79.5	73.9	80.3	80.0	72.1	NS	<0.01
FPCM (kg/d)	28.8	22.4	21.4	26.7	25.3	19.7	NS	<0.01
CH ₄ (% GE)*	6.7	7.2	7.2	6.4	7.2	7.3	NS	<0.01
CH ₄ (g/kg FPCM)	12.8	16.0	16.8	13.2	14.0	17.4	NS	<0.01

^{*} IPCC default 6.5%

Warner et al. (preliminary results)

Trade-offs other GHG and cost-effectiveness?

- CH₄, N₂O and CO₂ in LCA and farm level LP approach
- Grazing / ensiling grass of lower maturity (±15% lower DM yield/ha) to reduce enteric CH₄
- Strategy compared with adding linseed (1.5 kg/d) or nitrate supplementation (1% diet DM), relative to base

Source (kg CO₂e/t FPCM)	Grass maturity	Nitrate	Linseed
CH ₄	-10	-33	-42
Other on-farm GHG	0	+1	-2
Production farm inputs	-1	-1	35
Total emissions	-11	-32	-9
Cost effectiveness (€/t CO₂e)	57	241	2,594

Van Middelaar et al. (2014)

Conclusions

Significant impact of grass quality on enteric CH₄

- CH₄ yield (% GE and per kg DM intake) not constant
- large variation in CH₄ intensity (per kg FPCM)

Acknowledgements

André Bannink, Geronda Klop, Bayissa Hatew, Sabrina Podesta, Daniel Warner Wageningen University - NL

Product Board Animal Feed (NL) Dutch Dairy Board (NL) Ministry Economic Affairs (NL)

THANK YOU jan.dijkstra@wur.nl

